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Background

* The sequential nature of RL data
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Problem #1 - Attention in Transformers

* Current: one token can access its any previous token
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Decision Transformer (DT) [1]

Trajectory Transformer [2]

* Problems

- Hard to learn Markovian-like pattern from scratch
- Key information is diluted when sequence gets long [3,4]

Attention visualization from Trajectory Transformer(2] MDP

Problem #2 - Visual (Image) States

* Modeling sequences with visual states in RL is similar to modeling
videos but different
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ARformer

e Qur Motivations:

* Markovian-like inductive bias in the model
* Specialized modules for short- and long-term

» Different image embeddings for abstraction & details (Problem #2)
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Pure State Embedding

* Visual state representations
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Experiment Settings

* Baselines Atari

based: CQL[7], QR-DQNI8], REM[6], BEARI[9]

* Offline-reinforcement learning and Imitation Learning with image inputs

e Offline-RL: Transformer-based: Decision Transformer[1]; Non-Transformer-

* Imitation Learning: Transformer-based: Decision Transformer[1]; Non-
Transformer-based: Behavior Cloning using ViT[5] encoder (BC+ViT) ,
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Results

* StARformer outperforms DT and other baselines

Offline RL
CQL ® QR-DQN ™ REM M BEAR

Imitation Learning
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* StARformer successfully scales to longer input sequences

Performance vs. Seq Length (DMC)
4 Starformer (Ours) @ DT

Performance vs. Seq. Length (Atari)
A Starformer (Ours) @ DT
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* Semantic correspondence * Applied toreal robot

State Attention Maps (4 heads)
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