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• The sequential nature of RL data

StARformer Results

• Sequential Modeling
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- Sequential Modeling: sequence in, 
sequence out

- Traditional Approach : 
TD-learning based on MDP
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Problem #1 - Attention in Transformers

Decision Transformer (DT) [1] Trajectory Transformer [2]

• Current: one token can access its any previous token

- Hard to learn Markovian-like pattern from scratch
- Key information is diluted when sequence gets long [3,4]

Problem #2 - Visual (Image) States

• Markovian-like inductive bias in the model                              (Problem #1)
• Specialized modules for short- and long-term                    (Problem #1)
• Different image embeddings for abstraction & details   (Problem #2)
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Experiment Settings

Atari DMC

• Visual state representations
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• Offline-reinforcement learning and Imitation Learning with image inputs

• StARformer outperforms DT and other baselines
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• StARformer successfully scales to longer input sequences

• Baselines
• Offline-RL: Transformer-based: Decision Transformer[1]; Non-Transformer-

based: CQL[7], QR-DQN[8], REM[6], BEAR[9]
• Imitation Learning: Transformer-based: Decision Transformer[1]; Non-

Transformer-based: Behavior Cloning using ViT[5] encoder (BC+ViT)
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• Our Motivations: 

• Modeling sequences with visual states in RL is similar to modeling 
videos but different

MDPAttention visualization from Trajectory Transformer[2]

Highest scores 

Second highest Sparse

close to 
⋯

Step 

⋯

Aggregate

To the next 
Step Layer

To Seq. 
Layer

𝑎𝑎𝑡𝑡−1

𝑟𝑟𝑡𝑡−1

𝑠𝑠𝑡𝑡

𝑔𝑔𝑡𝑡

Patches

⋯

⋯

Conv

Pure State Embedding

Sequence

⋯

⋯

Sequence Transformer

Step 

⋯

T StAR-Representations

T groups T pure state tokens

To the next Seq. LayerTo Seq. Layer

Conv

Step 

Sequence: 
abstraction

Step:
spatial details


	StARformer: Transformer with State-Action-Reward Representation �for Visual Reinforcement Learning

