
1

StARformer: Transformer with
State-Action-Reward Representations for Robot

Learning
Jinghuan Shang, Xiang Li, Kumara Kahatapitiya, Yu-Cheol Lee, Member, IEEE and Michael S. Ryoo,

Abstract—Reinforcement Learning (RL) can be considered as a sequence modeling task, where an agent employs a sequence of
past state-action-reward experiences to predict a sequence of future actions. In this work, we propose State-Action-Reward
Transformer (StARformer), a Transformer architecture for robot learning with image inputs, which explicitly models short-term
state-action-reward representations (StAR-representations), essentially introducing a Markovian-like inductive bias to improve
long-term modeling. StARformer first extracts StAR-representations using self-attending patches of image states, action, and reward
tokens within a short temporal window. These StAR-representations are combined with pure image state representations, extracted as
convolutional features, to perform self-attention over the whole sequence. Our experimental results show that StARformer outperforms
the state-of-the-art Transformer-based method on image-based Atari and DeepMind Control Suite benchmarks, under both offline-RL
and imitation learning settings. We find that models can benefit from our combination of patch-wise and convolutional image
embeddings. StARformer is also more compliant with longer sequences of inputs than the baseline method. Finally, we demonstrate
how StARformer can be successfully applied to a real-world robot imitation learning setting via a human-following task.

Index Terms—transformer, robot learning, reinforcement learning, imitation learning

✦

1 INTRODUCTION

Reinforcement Learning (RL) naturally operates in a se-
quential manner, wherein an agent observes a state from the
environment, performs an action, observes the next state,
and receives a reward from the environment. With the recent
advances, RL has been formulated as a sequential decision-
making task, and Transformer [1] architectures have become
applied to this task as generative trajectory models. Given
past experiences of an agent composed of a sequence of
state-action-reward triplets, a model iteratively generates an
output sequence of action predictions [2], [3]. This novel
formulation has been shown to be quite useful, especially in
terms of its capability to model long-term sequences [3] and
sequence distributions [2].

In the state-of-the-art Transformer models for RL such
as [2], [3], an input sequence is plainly processed through
self-attention – the core modeling component of Transform-
ers [1]. Thus, a given state, action, or reward token may
attend to any of the (previous) tokens in the sequence,
which allows the model to capture long-term relations.
In the case of visual RL, image states are encoded using
convolutional networks (CNNs) to create tokens, before
processing through self-attention.

• J. Shang, X. Li, K. Kahatapitiya, and M. S. Ryoo are with the Department
of Computer Science, Stony Brook University, Stony Brook, NY, 11794.
E-mail: {jishang, xiangli8, kkahatapitiy, mryoo}@cs.stonybrook.edu

• Y.-C. Lee is with the Department of Autonomous Vehicle Engineering,
Korea Aerospace University, Goyang-si, Gyeonggi-do, 10540, Korea, and
also with Artificial Intelligence Laboratory, Electronics and Telecommuni-
cations Research Institute, Daejeon, 34129, Korea.
E-mail: yclee@kau.ac.kr

Manuscript received Feb. 16, 2022; revised Aug. 28, 2022; accepted Sep. 4,
2022
(Corresponding authors: Yu-Cheol Lee and Michael S. Ryoo.)

However, tokens within adjacent time steps generally
exhibit strong connectivity as a result of potential causal
relations. For instance, states in the recent past have a
stronger effect on the subsequent action than those in the
distant past. Similarly, the immediate-future state and the
corresponding reward are the direct results of the current
action. In the extreme case of the Markov Decision Process
(MDP), which is used to formulate RL problems, the rela-
tions are far stronger and more restricted (see Fig. 2). In the
aforementioned scenarios, a Transformer naively attending
to all tokens naively may suffer from excess information
or dilute the truly-essential relation priors, thus making the
learning-process harder. This is especially critical when the
input sequences are significantly large, either spatially [4]
or temporally [3] dimension, and when Transformer models
become heavy, i.e., contain a large number of layers [5].
Moreover, the tokenization of overall image states (as a
whole) based on CNNs further restricts Transformer models
from capturing detailed spatial relations, resulting in the
loss of poetentially critical information, particularly in RL
tasks with fine-grained regions of interest.

To alleviate these issues, we propose the State-Action-
Reward Transformer (StARformer), a Transformer architec-
ture that learns State-Action-Reward-representations (i.e.,
StAR-representations) for visual RL. StARformer consists of
two basic components: a Step Transformer and a Sequence
Transformer. The Step Transformer learns local represen-
tations (i.e., StAR-representations) based on self-attention
across state-action-reward tokens within a window of a single
time-step. When learning StAR-representations, we use ViT-
like [6] patch-wise embeddings of image states to retain fine-
grained spatial information. The Sequence Transformer then
combines StAR-representations with pure image state repre-

2

Fig. 1. Illustration of RL as a sequence modeling task using Transformer:
(a) A straightforward approach and, (b) Our proposed improvement.
Our intuition is to explicitly use local features to facilitate long-term se-
quence modeling. Red arrows indicate actions being autoregressively-
generated based on a state, while also considering previous tokens.
Green arrows denote our explicit local representation (i.e., grouping),
which further improves action generation, combined with the existing
state representations. Attention maps between action and pixel state
patches produced by our method (in Breakout environment) are visual-
ized in (c). Different regions-of-interest (i.e., ball, paddle, and lower-level
bricks) are focused upon each attention head. In the second attention
map from the left, weights in the paddle region are directed towards right
(circled in red), corresponding to the semantic meaning of the “right”
action.

Fig. 2. MDP view of an RL process. Only the connected pairs (denoted
by directed arrows) are causally related, whereas all other elements are
mutually independent. For instance, state s1 only depends on previous
state s0 and action a0, action a1 is taken based on state s1, and no
direct relations exist between action a0 and reward r2.

sentations from the entire sequence to generate action predic-
tions. Pure state representations are convolutional features
of the image states. This modeling approach can explicitly
capture strong short-term relationships while accounting for
the overall trajectory. In our experiments, we show that
StARformer outperforms the state-of-the-art Transformer-
based method in both offline-RL and imitation learning
settings, while being more-compliant with longer input
sequences in comparison. We also find that multiple dif-
ferent state embeddings (such as patch-wise and convolu-

tional) can yield better representations. Finally, we deploy
our method on an actual robot which performs a human-
following task, to demonstrate its potential in real-world
imitation learning settings.

Our contributions are as follows: (1) we model single-
step transitions explicitly, relieving model capacity to im-
prove focus on long-term relations; (2) we use both local
and global information (separately and combined) to tackle
long-term sequence modeling, and (3) we verify its applica-
bility in real-world robot learning.

2 RELATED WORK

2.1 Reinforcement Learning to Sequence Modeling
Reinforcement Learning (RL) is typically modeled as a
Markov Decision Process (MDP), where actions are made
solely based on the current state according to the Markov
property. Accordingly, single-step value-estimation meth-
ods have been derived from the Bellman equation, including
Q-learning [7] and Temporal Difference (TD) learning, along
with many other variants such as SARSA [8], TD(λ) [9], TD-
Gammon [10], and Actor-Critic [11]. In recent studies, neural
networks have been used to approximate the value function
in value-based methods, introducing Deep Q-learning [12].

More recent directions [2], [3] formulate RL as a sequence
modeling task, where the model uses a sequence of re-
cent experiences, including state-actions-reward triplets, to
predict future actions. This can potentially replace value-
estimation methods, and can be trained in a supervised
learning manner. However, this approach requires pre-
existing trajectories (collected in advance), making it more
compliant with offline RL and imitation learning settings.
Zheng et al. [13] adapted sequence modeling formulation
from offline-settings to online settings. Furuta et al. [14]
extended DT [2] to a generalized version to match any given
hindsight information.

2.2 Transformers
Transformer architectures [1] were first introduced in lan-
guage processing tasks [15], [16], [17] to model interactions
within a sequence of word embeddings, or, more generally,
unit representations or tokens. More recently, Transformers
have been employed in vision tasks with the key idea of
breaking down images/videos into tokens [6], [18], [19],
[20], often outperforming convolutional networks (CNNs)
in practice. Transformers have also been successfully used to
handle sensory information [21] and perform one-shot imi-
tation learning [22]. Chen et al. [2] explored how GPT [17]
can be applied to RL in a sequence modeling setting.

Sequence modeling in visual RL is similar to video-
based learning in terms of the input data, which consists
of observed image (i.e. state) sequences. One challenge in
applying Transformers to videos is the large number of
input tokens required to be processed. This problem has
been investigated in multiple directions, including attention
approximation [23], [24], [25], separable attention in differ-
ent dimensions [18], [26], reducing the number of tokens
using local windows [27], [28], and adaptively generating a
small number of tokens [29].

StARformer presents a similar concept of using local
windows for self-attention in Swin Transformer [27]. Our

3

approach is also closely related to “divided space-time
attention” in [26] and “factorized self-attention” in [18],
in terms of handling spatial and temporal attention sepa-
rately in mentioned literature. Because these methods are
designed to reduce the number of tokens, our primary
goal is to model short- and long-range contexts separately,
thus ensuring higher performance on RL trajectories. Our
Step-to-Sequence connection is inspired by [30], which
was designed for image domain. However, our model is
still unique as (a) “spatial” (using Step Transformer) and
“temporal” (using Sequence Transformer) attention are per-
formed in multiple Transformer layers, (b) separate sets
of tokens with different origins are used, and (c) a set
of locally-attended tokens is fed to perform self-attention
in conjunction with a set of global tokens for long-term
sequence modeling. Furthermore, we find similar concepts
for the use of both attention and convolutional features
in [31].

3 PRELIMINARY

3.1 Transformer

Transformer [1] architectures have diverse applications in
language [15] and vision tasks [6], [18]. Given a sequence of
input tokens X = {x1, x2, ..., xn}, where ∀x ∈ X,x ∈ Rd, a
Transformer layer maps the sequence to an output sequence
of tokens Z = {z1, z2, ..., zn}, where ∀z ∈ Z, z ∈ Rd

through Multi-head Self-Attention (MSA) [15], followed by
Multi-Layer Perceptron (MLP) blocks with a residual con-
nection [32] and Layer Normalization (LN) [33]:

Z ′ = MSA(LN(X)) +X

Z = MLP(LN(Z ′)) + Z ′.
(1)

A Transformer model is obtained by stacking multiple such
layers. The mapping for each layer (l) is denoted by F (·):
Zl = F (Zl−1). We use the notation F (·) to represent a
Transformer layer in the remaining sections.

Self-attention [1], [34], [35], [36] is the core Transformer
component that models pairwise relations between tokens.
As presented in [1], an input token representation X is
linearly mapped into query, key and value representations
— that is {Q,K, V } ∈ Rn×d respectively — to compute self-
attention as follows:

Attention(Q,K, V) = softmax(
QKT

√
d

)V. (2)

The idea is to aggregate values based on pairwise simi-
larities between queries and keys. In such a mechanism,
each token can “attend to”, i.e., aggregate all tokens in
the sequence, with a specified weight based on learned
parameters and token content.

Vision Transformer (ViT) [6] extends the same concept
of self-attention to the image domain by mapping a set
of non-overlapping image patches to a sequence of tokens
using a fully-connected (FC) layer. Given an input image
s ∈ RH×W×C , a set of n non-overlapping local patches
P = {pi} ∈ Rh×w×C is extracted, flattened and linearly
mapped to a sequence of tokens {xi} ∈ Rd, through a fully-
connected (FC) layer Rhwc → Rd. We use a similar tokeniza-
tion approach as a part of our state token embeddings.

3.2 RL as Sequence Modeling

We consider a Markov Decision Process (MDP), described
by tuple (S,A, P,R), where s ∈ S represents the state,
a ∈ A, the action, r ∈ R, the reward, and P , the transition
dynamics given by P (s′|s, a). In MDP, a trajectory (τ) is
defined as the past experience of an agent, which is a
sequence composed of states, actions, and rewards in the
following temporal order:

τ = {s1, a1, r1, s2, a2, r2, . . . , st, at, rt}. (3)

RL is formulated as a sequence modeling task by consider-
ing action predictions from past experience [2], [3] according
to the following equation:

Pr(ât) = p(at| s1:t, a1:t−1, r1:t−1). (4)

This novel scheme does not employ conventional value
estimation or policy gradient methods.

A recent study [2], [3] attempted to use an existing Trans-
former architecture [17] for RL with the aforementioned for-
mulation. In [2], [3], the states (s), actions (a), and rewards
(r) are considered as input tokens (see Fig. 1a), and a causal
mask is used to ensure an autoregressive output sequence
generation (that is, Eq. 4). Here, a token could access any
of its corresponding prior tokens—in time— through self-
attention.

In contrast, our formulation attends tokens with (poten-
tially) strong causal relations explicitly, while also attending
to long-term relations as well. To achieve this, we split each
trajectory into small groups of state-action-reward tuples
(i.e., s, a, r) to learn local relations within the tokens of each
group through self-attention (see Fig. 1b). We then model
long-term relations in conjunction with the learned local re-
lations. Our grouping is based on the intuition that the local
causal relations between s, a and r are strong; that is, the
reward rt−1 and the state st are direct results of the action
at−1. Consequently, StARformer learns strong intermediate
representations from local groups of (at−1, rt−1, st) ex-
plicitly, to facilitate long-term sequence modeling. During
the learning of local representations, we further split each
image state into patches when learning local representations
to more effectively capture fine-grained relations between
the action and local state regions. We find that our scheme
is similar to the divided spatial-temporal attention in [26],
which is applied in the video domain with the intuition of
reducing computation requirements.

4 STARFORMER

4.1 Overview

StARformer consists of two basic components: Step Trans-
former and Sequence Transformer, together with interleav-
ing connections (see Fig. 3). Step Transformer learns StAR-
representations from strongly-connected local tokens explic-
itly, which are then fed into the Sequence Transformer along
with pure state representations to model the whole in-
put trajectory. At the output of the final Sequence Trans-
former layer, we make action predictions via a prediction
head. In the following subsections, we will introduce the
two Transformer components, and their corresponding to-
ken embeddings in detail.

4

Fig. 3. (a) Structure summary of original DT [2], where its Transformer layers act similar as our Sequence Transformer. (b) StARformer consists of
Step Transformer and Sequence Transformer, to separately model a single-step and the sequence as-a-whole, respectively. Two types of layers are
connected at each level via learned StAR-representations. In terms of state embedding methods, DT uses only convolution, while StARformer uses
ViT-like [6] embeddings (patches) in Step Transformer and convolution in Sequence Transformer separately.

4.2 Step Transformer

4.2.1 State-Action-Reward Embeddings

Grouping state-action-reward: Our intuition of grouping is
to model strong local relations explicitly. To do so, we first
segment a trajectory (τ) into a set of groups, each of which
consists of a previous action (at−1), corresponding reward
(rt−1), and current state (st)1 (see Fig. 4). Each element
within a group has a strong causal relationships with the
other elements.
Patch-wise state token embeddings: In Step Transformer,
each input image state is tokenized by dividing it into a set
of non-overlapping spatial patches along its spatial dimen-
sions, in accordance with ViT [6]. Consider an image state
st ∈ RH×W×C , we divide it into patches {sit},∈ Rh×w×C ,
which generates a total of HW/hw state tokens per image.
We use a linear projection, where the weights of which are
shared by each state patch across all groups, to create token
embeddings (RhwC → Rd for image states or R1 → Rd for
vector states) according to the following equation:

zsit = FC(Flatten(sit)) + e
spatial
i (5)

where espatial
i ∈ Rd represents a spatial positional embedding

for each patch location, n is the number of patches, d is the
embedding dimension. Note that there are no temporal po-
sitional embeddings for patch-wise spatial tokens because
they are processed in agnostic of timesteps.

Our motivation for using patch embeddings is to create
fine-grained state embeddings that allows the Step Trans-
former to model the relations between actions and rewards
within local state regions. This is especially useful in RL
tasks, where local regions of interest can be critical. We
empirically validated this in our experiments (Sec 6.5.1).
Action and reward token embeddings: We simply embed
the action tokens with a linear projection, and the reward
tokens with a linear projection followed by a Tanh(·) acti-
vation function, as in [2]. Thus, each token is mapped to an
appropriate value range for robot control.

zat−1
= FC(at−1), zrt = Tanh(FC(rt)) (6)

1. We pad the trajectory with a null action and zero reward at the
initial state s1 of the trajectory (see Section 4.4)

Altogether, we obtain a state-action-reward representation
as the input to the initial Step Transformer layer, expressed
as:

Z0
t = {zat−1

, zrt , zs1t , zs2t , . . . , zs
n
t
}. (7)

We obtain T groups of such token representations per
trajectory that are simultaneously processed by the Step
Transformer with shared parameters.

Fig. 4. Overview of Step Transformer. Output tokens are (1) sent to
the next Step Transformer layer and (2) aggregated to produce StAR-
representation.

4.2.2 Step Transformer Layer
We adopt the conventional Transformer design from [1]
(see Section 3.1) as our Step Transformer layer. Each group
of tokens from the previous layer Zl−1

t is transformed to Zl
t

by a Step Transformer layer with the mapping F l
step:

Zl
t = F l

step(Z
l−1
t). (8)

5

Fig. 5. (a) Pure state embeddings are learned from shared convolutional layers. (b) Sequence Transformer takes StAR-representation and the pure
state tokens and generate output tokens.

Each Step Transformer layer l outputs a State-Action-
Reward-representation (StAR-representation) glt ∈ RD by
aggregating the output tokens Zl

t ∈ Rn×d (see the green
flows in Fig. 4). We concatenate the tokens of each group
Zl
t and linearly projecting (Rnd → RD), where d and

D correspond to embedding dimensions of Step Trans-
former and Sequence Transformer, respectively.

glt = FC([Zl
t]) + e

temporal
t (9)

Here [·] represents the token concatenation within each
group, and e

temporal
t ∈ RD represents the temporal positional

embeddings for each timestep. Note that we add these
temporal positional embeddings to glt at each layer because
[Zl

t] is learned agnostically with respect to time. Finally, the
output StAR-representation glt is fed into the corresponding
Sequence Transformer layer for long-term sequence model-
ing.

4.3 Sequence Transformer

Our Sequence Transformer (illustrated in Fig. 5) mod-
els long-term sequences by looking at the learned StAR-
representations and the pure state tokens (introduced below)
over the entire trajectory.

4.3.1 Pure State Token Embeddings
In contrast to the patch-wise token embeddings in Step
Transformer, we embed the overall input image state st to
generate pure state tokens h0

t . Each such token represents a
single-state representation that describes the state globally
in space. We achieve this by processing each state through
a CNN encoder, whose convolutional layers spatially com-
bine the features. The convolutional encoder is obtained
from [37].

h0
t = Conv(st) + e

temporal
t , (10)

where e
temporal
t ∈ RD represents the temporal positional

embeddings exactly the same as what we add to gt.

4.3.2 Sequence Transformer Layer
As in Step Transformer, we use the conventional Trans-
former layer design from [1] for our Sequence Transformer.
The input to the Sequence Transformer layer l consists of

representations from two sources: (1) the learned StAR-
representations glt ∈ RD from the corresponding Step
Transformer layer, and (2) the pure state representation
hl−1
t ∈ RD from the previous Sequence Transformer layer.

The two types of token representations are merged to form a
single sequence, preserving their temporal order, as follows:

Y l
in = {gl1, hl−1

1 , gl2, h
l−1
2 , . . . , glT , h

l−1
T }. (11)

We place glt before hl−1
t , which originates from st, because glt

contains information pertaining to the previous action at−1,
which comes prior to st in the trajectory. We also apply a
causal mask in the Sequence Transformer to ensure that the
tokens at time t cannot attend to any future tokens (i.e., > t).

Sequence Transformer computes an intermediate set of
output tokens as follows:

Y l
out = F l

sequence(Y
l

in). (12)

We then select the tokens at even indices of Y l
out (where

indexing starts from 1) as the pure state tokens hl
t, which

are fed into the next Sequence Transformer layer. Because
the even indices correspond to the tokens originating from
the pure state representations st (Fig. 5(b)), they should be
used to predict actions from an autoregressive perspective
(see Fig. 1). In contrast, any tokens in Y l

out with odd indices
do not propagate to the next layer.

Y l
out = {ylout;1, y

l
out;2, . . . , y

l
out;2T }

hl
i := ylout;2i (13)

Therefore, the overall input (StAR-representation and pure
state representation) to the subsequent layer can be ex-
pressed as (by rewriting Eq. 11):

Y l+1
in = {gl+1

1 , hl
1, g

l+1
2 , hl

2, . . . , g
l+1
T , hl

T }
= {gl+1

i , ylout;2i}Ti=1.
(14)

4.3.3 Action Prediction

The output of the last Sequence Transformer layer (after
selection as mentioned above) is used to generate action
predictions by processing it through a prediction head ϕ(·)
linearly mapping to the action dimension (with shared
weights for all timesteps): ât = ϕ(hl

t).

6

Fig. 6. Environments used in our experiments: Atari with a discrete action space, and DMC with a continuous action space. As in prior studies, we
convert RGB images to grayscale images as the model input.

4.4 Training and Inference
During training, we use trajectories τ with a length T , ran-
domly sampled (and sliced) from a memory buffer. Ground-
truth actions are used as labels. Cross-entropy loss is used
for a discrete action space, whereas the mean-squared error
(MSE) is used for a continuous action space. The overall
loss term for a given training sequence is the loss averaged
across all T predictions.

At inference, we initialize an input trajectory as τ =
{a0, r0, s1}, where a0 is a null action2 and r0 = 0 is the
zero reward which padded at the start of each trajectory.
StARformer makes an initial prediction â1 based on τ , and
receives the next state s2 and reward r2. We append these
â1, s2 and r2 to the trajectory τ and repeat this procedure
until the end of one RL episode.

5 SIMULATION EXPERIMENT SETTINGS

5.1 Settings
We use offline RL [38] and imitation learning as our experi-
ment settings. These settings are commonly used in related
studies that formulate RL as a sequence modeling task [2],
[3], because ground truth labels can be obtained for actions
to train a sequence model. In offline RL, we have a fixed
memory buffer of sub-optimal trajectory rollouts. Offline RL
is generally more challenging than conventional RL [38] due
to the shifted distribution.

Imitation learning, however, is the setting that the agent
is not exposed to reward signals. Therefore, we simply
remove the rewards from the dataset used in offline RL.
This presents a significant challenge compared to traditional
imitation learning because the provided trajectories are sub-
optimal (i.e., with lower rewards than true experts). The
only difference in terms of the model structure is that
there is now one less reward token in the input of Step
Transformer in our model, and T less reward tokens in the
baseline model (T is the number of time-steps in the input
trajectory).

5.2 Environments
We use image-based Atari [39] (discrete action space) and
DeepMind Control Suite (DMC) [40] (continuous action
space) to evaluate our model’s performance in different
types of tasks, as shown in Fig. 6 with image examples.
We select six games from Atari: Assault, Boxing, Breakout,

2. We use an additional action to represent null action in the discrete
action space, and a zero vector in the continuous action space.

Pong, Qbert, and Seaquest. As in [2] we use 1% (500k steps)
of the DQN replay buffer dataset [41] to perform a thorough
and fair comparison. We select five continuous control tasks
in DMC [40]: Ball-in-cup-catch, Cheetah-run, Finger-spin,
Reacher-easy, and Walker-walk. In DMC, we collect a replay
buffer (i.e. sub-optimal trajectories) generated by training an
SAC [42] agent from scratch for 500k steps in each task. This
is a similar setting to “Medium-Replay” in the D4RL [43]
dataset used by DT [2]. Note that these continuous control
tasks involve image inputs, which the previous study [2]
did not cover (originally using Gym [44]). Furthermore,
learning continuous control from pixels is more challenging
than directly learning from actual joint states [45], and is
generally harder than Atari games due to the larger con-
tinuous action space (eg. six dimensions in Cheetah and
Walker). We report the absolute value of episodic returns
(i.e., cumulative rewards). The results are averaged across
multiple randomly initialized runs (7 seeds in Atari and 10
in DMC), each run is evaluated by 10 randomly initialized
episodes.

5.3 Baselines

We select Decision-Transformer (DT) [2], a SOTA
Transformer-based sequence modeling method for RL. Al-
though Trajectory-Transformer [3] exsists, it is not designed
for image inputs. We use most of the same hyper-parameters
used in original DT [2] for the Atari environments, without
extra tuning (details in Appendix Tables 4 and 5). Because
DMC environments are not covered by DT [2], we care-
fully tune the baseline first and then use the same set of
hyper-parameters in our method. We also compare with
the SOTA non-Transformer offline-RL methods, including
CQL [46], QR-DQN [47], REM [48] in Atari, and BEAR [49],
IQL [50], and TD3+BC [51] in DMC. For imitation (behavior
cloning), we only compare with DT [2] and straightforward
behaviour cloning with ViT (denoted as BC-ViT).

6 RESULTS ON SIMULATION ENVIRONMENTS

6.1 Improving Sequence Modeling for RL

We first compare our StARformer (StAR) with the state-of-
the-art Transformer-based RL method in Atari and image-
based DMC environments, under both offline RL and imi-
tation learning settings. We select the Decision-Transformer
proposed in [2], (referred to as DT) as our baseline. Here, we
maintain T = 30 for all environments, which is the number
of time-steps (length) of each input trajectory (τ). We also

7

R
el

at
iv

e
P

er
fo

rm
an

ce

0.00

0.25

0.50

0.75

1.00

Atari DMC

Starformer (Ours) DT CQL QR-DQN REM BEAR IQL
TD3+BC

Offline RL

R
el

at
iv

e
P

er
fo

rm
an

ce

0.00

0.25

0.50

0.75

1.00

Atari DMC

Starformer (Ours) DT BC-ViT

Imitation Learning

Fig. 7. Relative performance of episodic returns. We compare StAR with DT [2] in both offline-RL and imitation settings. We also compare with
previous offline-RL methods in their capable environments, that is, CQL [46], QR-DQN [47] and REM [48] in Atari (discrete action space), and
CQL [46], BEAR [49], IQL [50], TD3+BC [51] in DMC (continuous action space). We introduce a baseline method BC-ViT for imitation learning,
which performs behavior cloning using a ViT encoder naively. StAR consistently outperforms others in both settings. Here, the results are averaged
across all environments and random seeds (7 in Atari and 10 in DMC), and normalized w.r.t. the performance of StAR. Please refer to Table 1 in
the Appendix for absolute values corresponding to the above results, with more comparisons of offline-RL methods.

Seq. Length

R
el

at
iv

e
P

er
fo

rm
an

ce

0.5
1.0
1.5
2.0
2.5
3.0
3.5

10 20 30

Starformer (Ours) DT

Performance vs. Seq. Length (Atari)

Seq. Length

R
el

at
iv

e
P

er
fo

rm
an

ce
0.4

0.6

0.8

1.0

1.2

10 20 30

Starformer (Ours) DT

Performance vs. Seq Length (DMC)

Fig. 8. Change in performance with the length of input sequence, T ∈ {10, 20, 30}, in Atari and DMC (averaged across tasks). Here, the results
are normalized w.r.t. StARformer performance at T = 10. We evaluate with offline-RL, as DT is more competitive in this setting. The results
show a performance gain in StARformer with longer input sequences, whereas DT [2] exhibits a drop in performance. This validates the superior
performance of our method in long-term sequence modeling. Please refer to Appendix Fig.1 for a more detailed comparison.

compare our method to CQL [46], a SOTA non-Transformer
offline-RL method. Fig. 7 shows that our method outper-
forms the baselines in both offline RL and imitation learning
settings, which suggests that our method models image
sequences more effectively.

6.2 Scaling-up to Longer Sequences

In this experiment, we evaluate how StARformer and DT
perform with different input sequence lengths, specifically
T = {10, 20, 30}. In Fig. 8, we see that StARformer achieves
satisfactory performance with longer trajectories, whereas
DT exhibits saturation as early as T = 10. This validates our
claim that considering short-term and long-term relations
separately (and then fusing) helps the model scale-up to
longer sequences. Instead of learning Markovian pattern
attentions [3] implicitly, we model it explicitly in our Step
Transformer. This acts as an inductive bias, relieving the ca-
pacity of Sequence Transformerto place more focus on long-
term relations. In contrast, DT uses the off-the-shelf lan-
guage model GPT [17], that does not consider the Markov
property. Although GPT [17] structure performs well for
long sentences, we show here it does not adequately handle
long RL sequences with image states.

6.3 Reward setting: Return-to-go, stepwise reward, or
no reward at-all?

We also intend to determine how different reward set-
tings affect sequence modeling, specifically, return-to-go

Fig. 9. Performance in different reward settings: return-to-go (RTG),
stepwise reward, and no reward at-all (labeled as ‘None’) settings. StAR-
former performs similarly in the two settings with reward, and demon-
strates slight degradation when rewards are not provided. In contrast,
DT shows a higher performance when used with RTG, compared to
DT under either stepwise or no reward settings. Results are averaged
across six Atari environments and normalized w.r.t DT-RTG.

(RTG) [2], stepwise reward, and no reward at-all. Decision-
Transformer [2] originally uses RTG R̂t, which is defined as
the sum of future step-wise rewards: R̂t =

∑T
t′=t rt′ . Similar

concepts have been studied in hindsight-related methods
to facilitate RL tasks [52], [53], [54], [55], [56], [57], [58].
Stepwise reward rt is the immediate reward generated by
the environment in each step, which is generally used in
most RL algorithms. Our StARformer uses step-wise reward
as the default, guided by the motivation of modeling single-
step transitions. The no reward setting corresponds to an
imitation formulation.

8

The results for each reward setting are presented in
Fig. 9. StARformer and DT behave differently under var-
ious reward seetings. Although both methods show an
increase in performance when a reward is provided, StAR-
former performs similarly regardless of RTG or stepwise
reward, whereas DT relies more on RTG. Note that in the
setting with no reward at-all, the rest of the dataset (i.e.
states and actions) is still the same. Sequence modeling
can still work on state-action trajectories without a reward
when the model has sufficient capacity to mine relevant
patterns and generate better representations. This suggests
that StARformer without a reward can outperform DT with
RTG.

6.4 Visualization

We present the attention maps between action and state
patches in Step Transformer(see Fig. 10) at several timesteps
extracted from a trajectory in Breakout. In this game, the
agent should move the paddle to bounce the ball back
from the bottom, after the ball falls down while breaking
the bricks on the top. In the presented attention maps, the
regions with a high attention score (highlighted) mainly
overlap with the locations of the ball, paddle, and potential
target bricks. We find the attention maps corresponding
to Head #1 are particularly interesting. Here, the focused
regions corresponding to the paddle show a directional
pattern, associated with the semantic meaning of the actions
“moving the paddle right”, “left”, or “stay”. This affirms
that Step Transformer captures the essential spatial relations
between actions and state patches, which is important for
decision making. Moreover, in Head #2, we observe that
the focused regions correspond to the locations of the ball,
except when the ball is outside of the boundary, too-close to
the paddle or indistinguishable within the bricks. Overall,
these attention maps suggest that how our model obtains a
basic understanding of the Breakout game.

6.5 Ablations

StARformer has two major differences compared to the
baseline method DT [2]: (1) it learns two types of representa-
tions, namely, StAR-representations and pure state embed-
dings; and (2) it employs a separate Step Transformer to
merge these two types of embeddings. The following sec-
tions present ablation studies on each of these distinctions.

6.5.1 StAR-representations and pure state embeddings
In terms of the learned representations, our approach de-
viates from the baseline method, which models all the
tokens from the trajectory (CNN-extracted states, actions,
and rewards) directly, whereas we:

• use ViT-like [6] patch-wise image embeddings when
learning StAR-representations in Step Transformer,
and,

• consider pure state representations ht (from convo-
lutional layers) together with StAR-representations in
Step Transformer.

To investigate the effect of the above changes, we vary
the state embedding methods used to learn st in Step Trans-
former and ht in Sequence Transformer. Specifically, we

Fig. 10. Visualization of attention maps in our Step Transformer ,
extracted from a clip of a Breakout trajectory, with all corresponding
timesteps and actions annotated. Attention weights are computed be-
tween the action token and state patch tokens. We highlight the ball in
orange for convenience. Actions and corresponding regions in attention
maps were labeled in different colors (“left” (blue), “right” (red) and “stay”
(gray)). In general, we find high attention scores in the actual locaitons
of the paddle and the ball. Each attention head focuses on different input
elements: bricks, the ball or the paddle. Specifically, we find a clear and
consistent semantic meaning in Head #1, which gives higher attention
scores with a directional pattern to the right when the action is “right”.
When the action is “stay”, it focuses on the paddle or the ball itself. Head
#2 mostly focuses on the ball, unless the ball is lost (out of boundary) or
indistinguishable within the bricks.

9

Fig. 11. (Top): Embedding methods used in the original DT, StARformer (StAR), and their variants. We label ViT (patch embeddings) as P,
convolution as C, and None (not using the corresponding embedding) as “ ”. (Bottom): (a-e) performance comparisons between variants. Relative
performance (in offline-RL, averaged across Atari tasks) in all comparisons is normalized w.r.t. StAR. We attach the number of parameters (in
millions (M)) of each method below each bar chart. These observations validate that (1) StAR benefits from the fusion of ViT and convolutional
features; (2) ViT performs better in Step Transformer and convolution works better in Sequence Transformer due to the specific context (short-term
and long-term, respectively). Specific results for each task are listed in Appendix Table 2.

Fig. 12. Illustration of our ablation study on Transformer connection of our model. Two variants — (b) StAR Fusion and (c) StAR Stack — are shown
in comparison to our original (a) StAR model. gl (green) is the StAR-representation from l-th layer of the Step Transformer and h0 (blue) denotes
the initial pure state embeddings. L is the number of layers. Positional embeddings are omitted for simplicity. (d) Experiments (offline-RL) find that
the original structure (StAR), which is a layer-wise fusion, yields higher performance than StAR Fusion and StAR Stack connections, as seen with
higher rewards. Please refer Table 3 in the Appendix for per-task results.

consider the following: (1) ViT features (patch embeddings,
labeled as P), (2) convolutional features (labeled as C), and
(3) none (not having the corresponding embedding, labeled
as “ ”). The original StARformer can be represented as
P+C (patch embeddings for st and convolutional embed-
dings for ht). Other variants include: P+P, P+ , C+P,
C+C, and C+ . We also implement a variant of DT using
ViT for state embedding (denoted as DT w/ ViT), to match
our method in terms of having a similar embedding method
and capacity (6.4M parameters vs. 5.3M parameters in our
method).

When comparing StARformer with the original DT and
DT w/ ViT (see Fig. 11(a)), we observe a performance
drop in DT when combined with ViT, which suggests

that replacing convolutional features with ViT-like features
naively does not benefit the model despite the increased
capacity (similar to ours). StARformer, however, does not
benefit only from the larger capacity, but also from its better
structural design, as verified in following experiments (see
Fig. 11(c)(d)(e)). From Fig. 11(b), we find that C+ which
only uses convolutional features at Step Transformer, per-
forms worse than DT. This is because convolutional features
are highly abstracted, making them unsuitable for single-
step transition (i.e., fine-grained) modeling.

Comparing P+C with C+C (Fig. 11(c)), the poorer perfor-
mance of C+C suggests that patches embeddings are better
suited for modeling single-transitions in Step Transformer.
In Fig. 11(d), we compare P+C with P+P and P+ . We find

10

that convolutional features work best in Sequence Trans-
former, which indicates that they provide abstract global
information that is useful for long-range modeling (coarse),
in contrast to patched embeddings. The observations from
these comparisons of StARformer variants suggest that our
method benefits from the fusion of patches and convolu-
tional features. This is further evaluated this by comparing
P+C with C+P (Fig. 11(e)), where P+C performs better,
confirming the “fine-grained (patches) to high-level (conv)”
fusion method as a best match with our sequence mod-
eling scheme of “single-transition followed-by long-range-
context”.

In summary, these observations supports two motiva-
tions on our model design (using P+C). (1) StARformer ben-
efits from using P and C to encode a visual state from
different aspects — P captures local, spatial details and C
captures global state information. Other variants using only
one kind of embeddings are relatively limited to represent
a state. (2) Furthermore, the two kinds of embeddings are
used in appropriate modules. P is used in Step Transformer to
better fuse with action and reward tokens, and C is used
in Sequence Transformer in order to summarize states at
high level for easier temporal modeling. The variant that
exchanges the usage of embeddings (C+P) has been shown
worse than the desired usage.

6.5.2 Step-to-Sequence Layer-wise Connections
In our model, we use learned StAR-representations g
and pure state representation h together in the Sequence
Transformer, implemented as layer-wise connections. In
fact, the Step Transformer is connected to the Sequence
Transformer via glt in a layer-wise manner (i.e., at each
corresponding layer). We investigate why such layer-wise
connections are important by comparing with two other
variants: (1) glt is fused with hl

t by summation (referred
as StAR Fusion, see Fig. 12(b)), and (2) the only connec-
tion between the two is from the last layer of Step Trans-
former to the first layer of Sequence Transformer, in which,
the Sequence Transformer is “stacked” on-top of the Step
Transformer (referred as StAR Stack, see Fig. 12(c)). Results
of these configurations are shown in Fig. 12(d). It shows
that our layer-wise connection method is important for
long-term prediction, which fuses information from StAR-
representation in each layer, and is done through attention
rather than direct fusion.

7 REAL-WORLD ROBOT IMITATION LEARNING EX-
PERIMENT: HUMAN-FOLLOWING

This section demonstrates how our method can be applied
to a ground mobility robot via a human-following task, in
the formulation of imitation learning. Our robot system and
human-following task are illustrated in Fig. 13. To the best
of our knowledge, this is first study to apply sequential
modeling methods to real-robot imitation learning.

The reason for this is Sequential modeling (Transformer)
can be a cheaper robot imitation learning method that does
not requrie online (i.e., real-robot) policy learning, thus
conserving time and human efforts. In such a formulation,
learning could be done in only two steps, as in behav-
ior cloning: (1) collecting the demonstration dataset, and

(2) training the sequential model (policy). This end-to-end
training scheme is also promising in the context of robotic
tasks, like navigation.

The following subsections introduce our human-
following task (in Sec. 7.1) and system settings (in Sec. 7.2),
followed by the release of a new real-world human-
following dataset (in Sec. 7.3), and our offline and online
evaluation results (in Sec. 7.4 and Sec. 7.5, respectively).

7.1 Human-following Task
We set up a human-following task to collect data in the
context of robot learning. In this task, the robot agent should
follow a moving human target (as long as possible) without
any disruptions, such as losing or changing targets, or
interfering with other moving people. A similar navigation
in crowded environment has been explored by Monaci et
al. [59] and is shown to be very challenging. The experi-
mental site is set up at the lobby of a university department
building with up to 12 moving or standing people. First,
we collect expert demonstrations (the dataset), described
in Sec. 7.3. Subsequently, we trained a policy based on
the collected dataset. After the convergence of training, the
model was ready to be evaluated/used offline or online.

7.2 Robot System Settings
To implement the robot system for the human-following
task, we construct a mobile robot platform equipped with
a computer, a router, a spherical camera, a LiDAR and
a projected texture stereo (PTS) camera, as shown in Fig.
14(a). The spherical camera captures a panoramic image
with 3840 × 1920 resolution at a frequency of 29.97Hz. The
PTS camera acquires 3-channel color and depth images with
1280 × 720 resolution at a frequency of 30Hz. The LiDAR
sensor scans 16-channels of distance ranges in the vertical
direction with a 2◦ interval angle for objects within the 100m
distance.

In terms of software, the sensors, robot platform, and the
trained model are integrated using Robot Operation System
(ROS) as middleware. Shown by dashed lines and boxes in
Fig. 14(b), the panoramic image, RGB-D image, linear and
angular velocities, and point cloud data are synchronized
to be saved as the dataset. The collected data are used to
train the human-following model and evaluate its offline
performance. For this, an expert manually controls the lin-
ear and the angular velocities of the robot by a wireless
game controller, adapting it to the human-following task.
Simultaneous localization and mapping (SLAM) algorithm
is used to evaluate the model’s performance by estimating
the accurate positions and velocities of the robot using the
point cloud data from LiDAR. An online evaluation of the
trained model is subsequently performed, as shown by the
solid lines and boxes in Fig. 14(b). We use FOV images as the
input. The trained model generates the linear and angular
velocities as actions for controlling the robot. The entire
system runs at ∼ 10Hz during data collection and online
evaluation.

7.3 Human-following Dataset
We collected a human-following expert dataset by manu-
ally controlling the robot to follow moving human targets.

11

Fig. 13. (a) The ground mobility robot system we use. (b) The action space (control command) of the robot includes linear velocity and angular
velocity. (c) A trajectory clip from the robot view (model input) of our human-following task. We highlight the locations of target person by blue
arrows. In our human-following task, the robot should keep following the target person when other non-target people are actively walking, standing,
and crossing.

Fig. 14. Overview of our robot system: (a) robot platform configuration
and, (b) software schematics and data flow. Here, the dotted lines and
boxes represent the dataset collection and offline evaluation, whereas
the solid lines and boxes represent the online evaluation. Note the SLAM
is only used to annotate robot global positions, which are then used as
labels in the position prediction task and trajectory visualization.

The experiment site was set in a department lobby with a
group of volunteers3. During data collection, the robot was
continuously controlled to follow a specific person (target)
continuously along a trajectory. Other volunteers were re-
quired to walk, stand, and sit randomly at the experimental
site. They were also encouraged to cross the robot’s path to
confuse it or occlude the target.

In terms of brief statistics of the dataset, there were 2-12
volunteers simultaneously in the scene, and we collected
nine valid trajectories with the robot following different
targets, reaching 51,817 frames or ∼86 minutes in total.
We recorded stereo images, RGB-D images, LiDAR data
(point clouds in local coordinates), and robot actions (linear
and angular velocities). A sample frame (images and point
clouds) of the collected data is shown in Fig. 15. Note that
our study only considers image modalities as inputs. Point
clouds are used to annotate the ground truth of the position
prediction task and visualization via a conventional SLAM
algorithm.

7.4 Offline Evaluation
7.4.1 Evaluation Task Setup
We perform offline evaluation of multiple visual input
modalities and on multiple tasks. As input modalities, we
consider (a) SRGB: panoramic images from the spherical
camera, (b) FRGB: field-of-view (FOV) RGB images from the
PTS camera, and (c) FRGB-D: FRGB input plus depth chan-
nel images from the PTS camera. We set up two evaluation
tasks: policy learning and 2D position prediction.

3. We provided the volunteers with free food for their contribution.
All volunteers were required to wear masks whenever they were not
actively eating or drinking.

Policy learning (action prediction): The policy learning
task focuses on predicting robot control commands, which
include linear and angular velocities. Here, we consider
continuous and discrete action space settings. In the con-
tinuous action space, evaluations are performed using the
mean squared error (MSE) between the predicted ât and
ground truth at robot controls (normalized to [−1, 1] range)
as given by:

error =
1

N

∑
t

||ât − at||2, (15)

where N denotes the trajectory length. In the discrete action
space, the original 2D linear-angular space is divided into
finite categories. We create two discretized action spaces —
6-action and 10-action spaces — as shown in Table 1. Here,
actions consist of combinations of (normalized) linear and
angular velocities, and we re-label the original real control
commands with the discrete action categories as above.
Finally, we use classification accuracy as a metric to evaluate
performance.
2D position prediction: The other evaluation task focuses
on predicting the 2D position of the robot. We perform
this task by predicting displacement ∆p̂i (in Cartesian co-
ordinates) at each timestep, and accumulating all predicted
displacements until timestep t to obtain the global position
p̂t given by:

p̂t =
t∑
0

∆p̂t. (16)

We measure the Euclidean distance between the predicted
position and the ground-truth position at the end of the
trajectory as follows:

error = ||p̂N − pN ||2. (17)

Note that the ground truth 2D positions are obtained from
SLAM results. We ignore the z-axis (height) because the
robot does not move along that axis.

Cross-validation was performed for all tasks. In each
cross-validation run, we use 8 of 9 total trajectories to
train and use the remaining trajectory for evaluation. The
evaluation results are averaged across all 9 cross-validation
runs.

7.4.2 Results
We compare our method with DT [2], and Behavior Cloning
(BC). BC is implemented by (1) several convolutional layers
(CNN) or (2) ViT [6] for the action prediction (imitation
learning) tasks. For the position prediction task, we use the

12

Fig. 15. A sample frame from the collected human-following dataset. The dataset contains panoramic images, RGB and depth FOV images, and
point cloud. Here, the robot is following a person (in the middle of the view) with other non-target people at the experiment site.

TABLE 1
Continuous and discrete action spaces used for offline evaluation.

Action Space Linear Velocity × Angular Velocity

Continuous [−1.0, 1.0]× [−1.0, 1.0]
6-action {0, 1.0} × {−1.0, 0, 1.0}
10-action {0, 1.0} × {−1.0,−0.5, 0, 0.5, 1.0}

same CNN and ViT as those used in BC (labeled as CNN
and ViT in Table 2).

Table 2 presents the offline evaluation results on the
collected human-following dataset. Among all tasks, our
method and DT, which are sequential modeling (Trans-
former) methods, outperform naive behavior cloning. BC-
ViT generally performs worse than BC-CNN, which indi-
cates that the sole use of ViT [6] may be insufficient to tackle
robotic tasks. From the first four rows of Table 2, we find that
StARformer generally produced the highest performance in
all action prediction tasks. This confirms that the proposed
method can be generalized to real-world imitation learning
problems. With regard to the 2D position prediction task,
StARformer also outperforms BC methods and DT [2] by
a large margin, showing that our model can be applied to
other real-world prediction tasks as well.

Moreover, our method works well with all three vi-
sual modalities, demonstrating its generalizability. The
panoramic input (SRGB) provides the best performance in
the continuous action prediction task, as the target object
is always included in the scene, which is essential for
predicting fine-grained actions. Even under FRGB input,
which presents a limited view, our method outperforms the
best BC agent with SRGB input. In the discrete action space
setting, FRGB-D input generally yields the best performance
among all three methods (except for 10-action prediction
by our method). For the position prediction task, FRGB-D
input yields the best general performance. Inputs with the
depth channel provide more informative cues for predicting
displacements than pure RGB inputs. We also find that our
model with SRGB outperforms other methods with FRGB-
D input in the position prediction task, without relying
on any depth information. These findings based on visual
modalities can be useful for future research on vision-based
robot learning using Transformers.

7.5 Online Real-world Evaluation
7.5.1 Evaluation Scenarios
We designed three scenarios (see Fig. 16) based on different
trajectory shapes generated by the target’s motion:

(a) moving in a “0” shape (Trajectory “0”)
(b) moving in an “8” shape (Trajectory “8”)
(c) moving randomly with interference from non-targets

(Random + Interference)

In the first two scenarios, only the target person moves
and the other people remain in place. In the third scenario,
non-target people also move casually in the same environ-
ment, occasionally interfering with the robot. Therefore, the
difficulty increases accordingly from the first to the last
scenario. Each scenario ends when the robot successfully
follows the target for at least several minutes (5min, 3min,
5min for scenarios a, b, and c, respectively) or reaches a
maximum of 10 trials (i.e., 10 failures). A failure is deter-
mined in real time by the experimenter when (1) the robot
is about to bump into a wall, object, or other person; or (2)
the robot deviates from the target person, with no indica-
tion of returning to the correct trajectory for approximate
2 seconds. We ensure fairness in the evaluation scenarios
by following the same target person at the same site. The
target person has an unseen appearance compared with
the collected dataset. We use a panoramic image input and
continuous action space in this experiment. Please check our
supplementary video for a better understanding.

7.5.2 Evaluation Metrics

We devise two evaluation metrics for the human-following
task.
Average Following Time to Failure (AFTF): First, we mea-
sure the Average Following Time to Failure (AFTF), or the
averaged duration of each trial prior to any failure4.
Success Rate vs. Angular Error: Second, we construct a suc-
cess rate-angular error curve, showing the success rate the
robot gains under a certain angular error threshold. More
specifically, we define success/failure as the target person
appearing within/falling out of a certain angular range (i.e.,
angular error) with respect to the center of the robot view
(see Fig. 17. A higher success rate at a lower angular error
suggests better stability in the human-following task, which
means that the robot camera is continuously centered on
the target. This metric is calculated using the position of
the target person (center of the bounding box) extracted
by a conventional tracking algorithm on panoramic images.
We do not consider the distance between the robot and the
target in this evaluation since our tasks do not consider a
distance requirement in following.

4. The definition of a failure here in AFTF metric is the same as in
Sec. 7.5.1.

13

TABLE 2
Offline Evaluation Results. 6-Discrete and 10-Discrete correspond to the discrete action spaces of 6 and 10 categories, respectively. We denote

the evaluation metric used in each setting with ↑ / ↓ to note the preferred change. SRGB, FRGB-D, and FRGB represent for different input
modalities. All listed results are are mean values among all cross-validation runs. Our method consistently outperforms the other methods in all

tasks and input modalities.

Task Metric Method Input

SRGB FRGB-D FRGB

Action Prediction

Continuous Action MSE ↓
BC-CNN 0.149 0.164 0.170
BC-ViT 0.137 0.167 0.168
DT 0.132 0.146 0.150
Ours 0.124 0.136 0.142

6-action Accuracy ↑
BC 58.6% 55.0% 55.4%
BC-ViT 55.5% 49.5% 46.6%
DT 80.6% 82.8% 82.1%
Ours 82.1% 84.0% 83.0%

10-action Accuracy ↑
BC 39.8% 52.0% 48.2%
BC-ViT 53.0% 46.9% 50.0%
DT 73.6% 76.6% 75.7%
Ours 75.3% 77.0% 77.3%

2-d Position Prediction Error distance ↓
CNN 51.4 39.3 70.1
ViT 82.5 130.5 109.9
DT 42.9 38.7 36.8
Ours 32.1 22.8 23.2

Fig. 16. Samples of the three online evaluation scenarios. We present a chronological sequence of frames from left to right for each scenario in our
experiment recording (shown in different rows). The difficulty of human-following increases from Trajectory “0” (Row 1) to Trajectory “8” (Row 2) and
“Random + Interference” (Row 3). In the sample with interference, we included a non-target person moving in the robot’s path.

TABLE 3
Online evaluation results measured by Average Following Time to

Failure (AFTF) and the number of trials (defined in Sec. 7.5.1). We skip
BC-CNN in the third scenario (random + interference), as BC fails

easily and the trajectories become very short. Under our method, the
robot successfully follows the person in the “0” and “8” trajectories

without any failure, and gains longer AFTF compared to DT and BC in
the relatively-harder “Random + Interference” scenario. Please refer to

our supplementary video for better understanding.

Target Trajectory Method trials ↓ AFTF (s) ↑

Trajectory “0”
BC 3 101.6
DT 1 300.0
StAR 1 300.0

Trajectory “8”
BC 10 18.1
DT 3 62.0
StAR 1 180.0

Random + Interference
BC - -
DT 6 53.3
StAR 3 109.3

7.5.3 Results

We acquire quantitative evaluation results (presented in Ta-
ble 3 and Fig. 18) by comparing StARformer (StAR), DT [2],
and behavior cloning (BC). We use BC-CNN here because
BC-ViT is found to hard to generalized in this real world
scenario. Table 3 lists the AFTF and the number of trials for
all methods. Both Transformer-based methods outperform
BC by a large margin in all scenarios. Compared with
DT, our method shows better performance in the following
complex patterns. In the hardest scenario, where noise and
randomness make the following much more challenging,
both DT and our method show shorter AFTF and a higher
number of trials. However, our method is more robust,
with 50% fewer trials and 105% longer AFTF than DT. We
also visualize the Success Rate vs. Angular Error curve, as
shown in Fig. 18. Our method shows significantly higher
success rates at lower angular-error thresholds, in two of
the relatively-challenging scenarios among all algorithms,
demonstrating its stability when following complex trajec-
tories.

14

Fig. 17. Definition of success/failure in success rate vs. angular error
metrics. We show two frames in different angular error thresholds (15
and 30 degrees, for example). In the left column, with a 15-deg angular
error, the upper frame suggests a success because the center of the
bounding-box is within the threshold, whereas the lower frame indicates
a failure. By increasing the error threshold from 15 deg to 30 deg, as
shown in in the right column, both frames represent success. Note that
bounding-boxes of the target person are extracted after the experiment
by conventional tracking algorithms, for evaluation only.

Fig 19 shows real trajectories generated from experi-
ments on Trajectories “0” and “8”. We find that for Trajectory
“0” scenario, BC fails to follow the target’s turning, whereas
both DT and our method generate smooth trajectories. For
Trajectory “8” scenario, BC fails more frequently and barely
follows the target, as the trajectory includes sharper turns. In
contrast, our method follows the target without any failure,
whereas DT fails twice. In the “Random + Interference”
scenario, we observe that our method can follow the original
target for a longer time than the baseline methods. For
instance, when a person crosses the target’s patch, causing
occlusion and confusion, the robot continues to successfully
follows the target. For more details concerning the “Random
+ Interference” scenario, please refer to our supplementary
video.

8 CONCLUSION

This study introduces StARformer, which explicitly models
strong local relations (Step Transformer) to facilitate the
long-term sequence modeling (Sequence Transformer) in
Visual RL. Our extensive empirical results show how the
learned StAR-representations help our model to outperform
the baseline in both Atari and DMC environments, as well as
both offline RL and imitation learning settings. We find that
the fusion of learned StAR-representations and convolution
features benefits action prediction. We further demonstrate
that our designed architecture and token embeddings are
essential to successfully model trajectories, with an empha-
sis on long sequences. We also verify that our method can be
applied to real-world robot learning settings via a human-
following experiment.

ACKNOWLEDGEMENT

We thank Ryan Burgert for his contribution in setting up
robot systems. We also thank members in Robotics Lab
and Computer Vision Lab at Stony Brook University for

valuable discussions and volunteering for data collection.
This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Ministry of Science and ICT (No.2018-
0-00205, Development of Core Technology of Robot Task-
Intelligence for Improvement of Labor Condition.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proc. Adv. Neural Inform. Process. Syst., Dec. 2017.

[2] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin,
P. Abbeel, A. Srinivas, and I. Mordatch, “Decision transformer:
Reinforcement learning via sequence modeling,” in Proc. Adv.
Neural Inform. Process. Syst., Dec. 2021.

[3] M. Janner, Q. Li, and S. Levine, “Offline reinforcement learning as
one big sequence modeling problem,” in Proc. Adv. Neural Inform.
Process. Syst., Dec. 2021.

[4] J. Yang, C. Li, P. Zhang, X. Dai, B. Xiao, L. Yuan, and J. Gao, “Focal
self-attention for local-global interactions in vision transformers,”
2021, arXiv:2107.00641.

[5] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou,
“Going deeper with image transformers,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., Oct. 2021, pp. 32–42.

[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly
et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” in Proc. Int. Conf. Learn. Represent., Apr. 2020.

[7] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, May 1992.

[8] G. A. Rummery and M. Niranjan, On-line Q-learning using connec-
tionist systems. Citeseer, 1994, vol. 37.

[9] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine learning, vol. 3, no. 1, pp. 9–44, Aug. 1988.

[10] G. Tesauro et al., “Temporal difference learning and TD-Gammon,”
Commun. ACM, vol. 38, no. 3, pp. 58–68, Mar. 1995.

[11] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Proc.
Adv. Neural Inform. Process. Syst., Dec. 2000.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforce-
ment learning,” 2013, arXiv:1312.5602.

[13] Q. Zheng, A. Zhang, and A. Grover, “Online decision trans-
former,” 2022.

[14] H. Furuta, Y. Matsuo, and S. S. Gu, “Distributional decision
transformer for hindsight information matching,” in International
Conference on Learning Representations, 2022.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” 2019, arXiv:1810.04805.

[16] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Im-
proving language understanding by generative pre-training,” pp.
1–12, 2018.

[17] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI
blog, vol. 1, no. 8, 2019.

[18] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, and
C. Schmid, “ViViT: A video vision transformer,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., Oct. 2021.

[19] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, P. Dhariwal, D. Luan,
and I. Sutskever, “Generative pretraining from pixels,” in Proc. Int.
Conf. on Mach. Learn., Jul. 2000, pp. 1691–1703.

[20] D. Neimark, O. Bar, M. Zohar, and D. Asselmann, “Video trans-
former network,” 2021, arXiv:2102.00719.

[21] Y. Tang and D. Ha, “The sensory neuron as a transformer:
Permutation-invariant neural networks for reinforcement learn-
ing,” arXiv preprint arXiv:2109.02869, 2021.

[22] S. Dasari and A. Gupta, “Transformers for one-shot visual imita-
tion,” in Conference on Robot Learning, 2020.

[23] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane,
T. Sarlos, P. Hawkins, J. Davis, A. Mohiuddin, L. Kaiser, D. Be-
langer, L. Colwell, and A. Weller, “Rethinking attention with
performers,” in Proc. Int. Conf. Learn. Represent., Apr. 2020.

[24] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer:
Self-attention with linear complexity,” 2020, arXiv:2006.04768.

15

Fig. 18. Success Rate vs. Angular Error curve of online evaluation. Because BC fails easily in the third scenario, it is omitted in the figure. Our
method (StAR) shows significantly higher performance compared to DT in two of the relatively-challenging scenarios (“Trajectory 8” and “Random
+ Interference”), thus indicating a better stability.

Fig. 19. Real trajectory samples (for Trajectories “0” and “8”) from online evaluation. Robot trajectories are from SLAM. Human trajectories are
estimated from robot trajectories, point clouds, and images using a conventional tracking algorithm after the experiments. Red arrows indicate where
the robot fails to follow the target. When the robot is successfully following the target, the estimated human trajectories are relatively consistent with
the recorded robot trajectory. In the event of failure, the estimated human trajectories deviate from the robot trajectories due to (1) target being out
of view or (2) our manual reset. We find our method to have the highest success rate. We present the results as movie clips in our supplementary
video to improve understanding. This supplementary video also includes the results from the “random + interference” scenario, which are hard to
demonstrate in static images.

[25] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The efficient
transformer,” in Proc. Int. Conf. Learn. Represent., May 2019.

[26] G. Bertasius, H. Wang, and L. Torresani, “Is space-time attention
all you need for video understanding?” in Proc. Int. Conf. on Mach.
Learn., July 2021.

[27] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted
windows,” Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 10 012–
10 022, Oct. 2021.

[28] Z. Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin, and H. Hu, “Video
swin transformer,” 2021, arXiv:2106.13230.

[29] M. S. Ryoo, A. Piergiovanni, A. Arnab, M. Dehghani, and
A. Angelova, “TokenLearner: Adaptive space-time tokenization
for videos,” in Proc. Adv. Neural Inform. Process. Syst., Dec. 2021.

[30] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer
in transformer,” in Proc. Adv. Neural Inform. Process. Syst., Dec.
2021.

[31] Z. Dai, H. Liu, Q. V. Le, and M. Tan, “CoAtNet: Marrying convo-
lution and attention for all data sizes,” in Proc. Adv. Neural Inform.
Process. Syst., Dec. 2021.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Jun. 2016, pp. 770–778.

[33] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016,
arXiv:1607.06450.

[34] Z. Lin, M. Feng, C. N. dos Santos, M. Yu, B. Xiang, B. Zhou, and
Y. Bengio, “A structured self-attentive sentence embedding,” 2017,
arXiv:1703.03130.

[35] A. P. Parikh, O. Täckström, D. Das, and J. Uszkoreit, “A decom-
posable attention model for natural language inference,” 2016,
arXiv:1606.01933.

[36] J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-
networks for machine reading,” 2016, arXiv:1601.06733.

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[38] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,”
2020, arXiv:2005.01643.

[39] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The
arcade learning environment: An evaluation platform for general

16

agents,” J Artif Intell Res ., vol. 47, no. 1, pp. 253–279, May 2013.
[40] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez,

J. Merel, T. Erez, T. Lillicrap, N. Heess, and Y. Tassa, “dm control:
Software and tasks for continuous control,” Software Impacts, vol. 6,
p. 100022, Nov. 2020.

[41] R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic
perspective on offline reinforcement learning,” in Proc. Int. Conf.
on Mach. Learn., July 2020, pp. 104–114.

[42] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proc. Int. Conf. on Mach. Learn., Jul. 2018, pp.
1861–1870.

[43] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl:
Datasets for deep data-driven reinforcement learning,” 2021,
arXiv:2004.07219.

[44] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI gym,” 2016, arXiv:1606.01540.

[45] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fer-
gus, “Improving sample efficiency in model-free reinforcement
learning from images,” in Proc. AAAI Conf. Artif. Intell., May 2021,
pp. 10 674–10 681.

[46] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-
learning for offline reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 1179–1191, 2020.

[47] W. Dabney, M. Rowland, M. Bellemare, and R. Munos, “Dis-
tributional reinforcement learning with quantile regression,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
no. 1, 2018.

[48] R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic
perspective on offline reinforcement learning,” in International
Conference on Machine Learning. PMLR, 2020, pp. 104–114.

[49] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, “Stabilizing off-
policy q-learning via bootstrapping error reduction,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[50] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learn-
ing with implicit q-learning,” 2021.

[51] S. Fujimoto and S. S. Gu, “A minimalist approach to offline
reinforcement learning,” in NeurIPS, 2021.

[52] L. P. Kaelbling, “Learning to achieve goals,” in International Joint
Conference on Artificial Intelligence, 1993.

[53] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong,
P. Welinder, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba,
“Hindsight experience replay,” in Advances in neural information
processing systems, 2017.

[54] V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal difference
models: Model-free deep rl for model-based control,” International
Conference on Learning Representations, 2018.

[55] R. K. Srivastava, P. Shyam, F. Mutz, W. Jaśkowski, and J. Schmid-
huber, “Training agents using upside-down reinforcement learn-
ing,” arXiv preprint arXiv:1912.02877, 2019.

[56] A. Kumar, X. B. Peng, and S. Levine, “Reward-conditioned poli-
cies,” arXiv preprint arXiv:1912.13465, 2019.

[57] A. C. Li, L. Pinto, and P. Abbeel, “Generalized hindsight for
reinforcement learning,” in NeurIPS, 2020.

[58] B. Eysenbach, X. Geng, S. Levine, and R. Salakhutdinov, “Rewrit-
ing history with inverse rl: Hindsight inference for policy im-
provement,” in NeurIPS, 2020.

[59] G. Monaci, M. Aractingi, and T. Silander, “DiPCAN: Distilling
privileged information for crowd-aware navigation,” in Robotics:
Science and Systems (RSS) XVIII, 2022.

Jinghuan Shang received the B.S. degree in
Computer Science from Shanghai Jiao Tong
University, Shanghai, China, in 2018. He is cur-
rently pursuing a Ph.D. degree in Computer Sci-
ence at Stony Brook University. His research in-
terest lies in Representation Learning, Robotics,
and Computer Vision.

Xiang Li is a Ph.D. student at Computer Sci-
ence Department at Stony Brook University.
His research is concentrated in the area of
computer vision and robotics with focus on
vision-based reinforcement learning and self-
supervised learning. He received B.S. in Au-
tomation and M.S. in Control Engineering (with
honors) from Shanghai Jiao Tong University,
Shanghai, China, in 2015 and 2018 respectively.

Kumara Kahatapitiya is a Ph.D candidate in
Computer Science at Stony Brook University,
broadly-interested in computer vision and ma-
chine learning with an emphasis on video un-
derstanding. He received his B.S. degree in
Electronic and Telecommunication Engineering
from University of Moratuwa, Sri Lanka. He is
currently working on video representations with
minimal supervision and attention mechanisms.

Yu-Cheol Lee received the B.S. degrees in both
School of Mechanical Engineering and School
of Electrical and Electronic Engineering from
Yonsei University in 2004, the M.S. degree in
the Department of Mechanical Engineering from
POSTECH in 2006, and the Ph.D. degree in
Robotics Program form KAIST in 2020. He was
a Principal Researcher with Artificial Intelligence
Laboratory in ETRI, Daejeon, Korea, from 2006
to 2022. He participated the visiting researcher
in the Department of Computer Science, Stony

Brook University, New York, US, from 2021 to 2022. Since 2022, he
has joined as an assistant professor in the Department of Autonomous
Vehicle Engineering, Korea Aerospace University, Goyang-si, Gyeongi-
do, Korea. He has participated in numerous large-scale research project
performing a leading role as a researcher and manager. His research
achievements have been presented at prominent international confer-
ences and journals including IEEE, ASME, RSJ, and KRoS, at which he
received outstanding research awards. Currently, his research interests
include the localization and map building for intelligent vehicles, and
the navigation technology for pedestrians in indoor and outdoor envi-
ronments.

Michael Ryoo is a SUNY Empire Innovation
Associate Professor in the Department of Com-
puter Science at Stony Brook University, and
is also a staff research scientist at Robotics at
Google. His research focuses on video repre-
sentation learning. He previously was an assis-
tant professor at Indiana University Bloomington,
and was a staff researcher within the Robotics
Section of NASA’s Jet Propulsion Laboratory
(JPL). Dr. Ryoo received his Ph.D. from the Uni-
versity of Texas at Austin in 2008, and B.S. from

Korea Advanced Institute of Science and Technology (KAIST) in 2004.
His paper on robot-centric activity recognition at ICRA 2016 received the
Best Paper Award in Robot Vision.

	Introduction
	Related Work
	Reinforcement Learning to Sequence Modeling
	Transformers

	Preliminary
	Transformer
	RL as Sequence Modeling

	StARformer
	Overview
	Step Transformer
	State-Action-Reward Embeddings
	Step Transformer Layer

	Sequence Transformer
	Pure State Token Embeddings
	Sequence Transformer Layer
	Action Prediction

	Training and Inference

	Simulation Experiment Settings
	Settings
	Environments
	Baselines

	Results on Simulation Environments
	Improving Sequence Modeling for RL
	Scaling-up to Longer Sequences
	Reward setting: Return-to-go, stepwise reward, or no reward at-all?
	Visualization
	Ablations
	StAR-representations and pure state embeddings
	Step-to-Sequence Layer-wise Connections

	Real-world Robot Imitation Learning Experiment: Human-following
	Human-following Task
	Robot System Settings
	Human-following Dataset
	Offline Evaluation
	Evaluation Task Setup
	Results

	Online Real-world Evaluation
	Evaluation Scenarios
	Evaluation Metrics
	Results

	Conclusion
	References
	Biographies
	Jinghuan Shang
	Xiang Li
	Kumara Kahatapitiya
	Yu-Cheol Lee
	Michael Ryoo

