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StARformer: Transformer with
State-Action-Reward Representations for Robot

Learning
Jinghuan Shang, Xiang Li, Kumara Kahatapitiya, Yu-Cheol Lee, Member, IEEE and Michael S. Ryoo,

Abstract—Reinforcement Learning (RL) can be considered as a sequence modeling task, where an agent employs a sequence of
past state-action-reward experiences to predict a sequence of future actions. In this work, we propose State-Action-Reward
Transformer (StARformer), a Transformer architecture for robot learning with image inputs, which explicitly models short-term
state-action-reward representations (StAR-representations), essentially introducing a Markovian-like inductive bias to improve
long-term modeling. StARformer first extracts StAR-representations using self-attending patches of image states, action, and reward
tokens within a short temporal window. These StAR-representations are combined with pure image state representations, extracted as
convolutional features, to perform self-attention over the whole sequence. Our experimental results show that StARformer outperforms
the state-of-the-art Transformer-based method on image-based Atari and DeepMind Control Suite benchmarks, under both offline-RL
and imitation learning settings. We find that models can benefit from our combination of patch-wise and convolutional image
embeddings. StARformer is also more compliant with longer sequences of inputs than the baseline method. Finally, we demonstrate
how StARformer can be successfully applied to a real-world robot imitation learning setting via a human-following task.

Index Terms—transformer, robot learning, reinforcement learning, imitation learning

✦

1 INTRODUCTION

Reinforcement Learning (RL) naturally operates in a se-
quential manner, wherein an agent observes a state from the
environment, performs an action, observes the next state,
and receives a reward from the environment. With the recent
advances, RL has been formulated as a sequential decision-
making task, and Transformer [1] architectures have become
applied to this task as generative trajectory models. Given
past experiences of an agent composed of a sequence of
state-action-reward triplets, a model iteratively generates an
output sequence of action predictions [2], [3]. This novel
formulation has been shown to be quite useful, especially in
terms of its capability to model long-term sequences [3] and
sequence distributions [2].

In the state-of-the-art Transformer models for RL such
as [2], [3], an input sequence is plainly processed through
self-attention – the core modeling component of Transform-
ers [1]. Thus, a given state, action, or reward token may
attend to any of the (previous) tokens in the sequence,
which allows the model to capture long-term relations.
In the case of visual RL, image states are encoded using
convolutional networks (CNNs) to create tokens, before
processing through self-attention.
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However, tokens within adjacent time steps generally
exhibit strong connectivity as a result of potential causal
relations. For instance, states in the recent past have a
stronger effect on the subsequent action than those in the
distant past. Similarly, the immediate-future state and the
corresponding reward are the direct results of the current
action. In the extreme case of the Markov Decision Process
(MDP), which is used to formulate RL problems, the rela-
tions are far stronger and more restricted (see Fig. 2). In the
aforementioned scenarios, a Transformer naively attending
to all tokens naively may suffer from excess information
or dilute the truly-essential relation priors, thus making the
learning-process harder. This is especially critical when the
input sequences are significantly large, either spatially [4]
or temporally [3] dimension, and when Transformer models
become heavy, i.e., contain a large number of layers [5].
Moreover, the tokenization of overall image states (as a
whole) based on CNNs further restricts Transformer models
from capturing detailed spatial relations, resulting in the
loss of poetentially critical information, particularly in RL
tasks with fine-grained regions of interest.

To alleviate these issues, we propose the State-Action-
Reward Transformer (StARformer), a Transformer architec-
ture that learns State-Action-Reward-representations (i.e.,
StAR-representations) for visual RL. StARformer consists of
two basic components: a Step Transformer and a Sequence
Transformer. The Step Transformer learns local represen-
tations (i.e., StAR-representations) based on self-attention
across state-action-reward tokens within a window of a single
time-step. When learning StAR-representations, we use ViT-
like [6] patch-wise embeddings of image states to retain fine-
grained spatial information. The Sequence Transformer then
combines StAR-representations with pure image state repre-
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Fig. 1. Illustration of RL as a sequence modeling task using Transformer:
(a) A straightforward approach and, (b) Our proposed improvement.
Our intuition is to explicitly use local features to facilitate long-term se-
quence modeling. Red arrows indicate actions being autoregressively-
generated based on a state, while also considering previous tokens.
Green arrows denote our explicit local representation (i.e., grouping),
which further improves action generation, combined with the existing
state representations. Attention maps between action and pixel state
patches produced by our method (in Breakout environment) are visual-
ized in (c). Different regions-of-interest (i.e., ball, paddle, and lower-level
bricks) are focused upon each attention head. In the second attention
map from the left, weights in the paddle region are directed towards right
(circled in red), corresponding to the semantic meaning of the “right”
action.

Fig. 2. MDP view of an RL process. Only the connected pairs (denoted
by directed arrows) are causally related, whereas all other elements are
mutually independent. For instance, state s1 only depends on previous
state s0 and action a0, action a1 is taken based on state s1, and no
direct relations exist between action a0 and reward r2.

sentations from the entire sequence to generate action predic-
tions. Pure state representations are convolutional features
of the image states. This modeling approach can explicitly
capture strong short-term relationships while accounting for
the overall trajectory. In our experiments, we show that
StARformer outperforms the state-of-the-art Transformer-
based method in both offline-RL and imitation learning
settings, while being more-compliant with longer input
sequences in comparison. We also find that multiple dif-
ferent state embeddings (such as patch-wise and convolu-

tional) can yield better representations. Finally, we deploy
our method on an actual robot which performs a human-
following task, to demonstrate its potential in real-world
imitation learning settings.

Our contributions are as follows: (1) we model single-
step transitions explicitly, relieving model capacity to im-
prove focus on long-term relations; (2) we use both local
and global information (separately and combined) to tackle
long-term sequence modeling, and (3) we verify its applica-
bility in real-world robot learning.

2 RELATED WORK

2.1 Reinforcement Learning to Sequence Modeling
Reinforcement Learning (RL) is typically modeled as a
Markov Decision Process (MDP), where actions are made
solely based on the current state according to the Markov
property. Accordingly, single-step value-estimation meth-
ods have been derived from the Bellman equation, including
Q-learning [7] and Temporal Difference (TD) learning, along
with many other variants such as SARSA [8], TD(�) [9], TD-
Gammon [10], and Actor-Critic [11]. In recent studies, neural
networks have been used to approximate the value function
in value-based methods, introducing Deep Q-learning [12].

More recent directions [2], [3] formulate RL as a sequence
modeling task, where the model uses a sequence of re-
cent experiences, including state-actions-reward triplets, to
predict future actions. This can potentially replace value-
estimation methods, and can be trained in a supervised
learning manner. However, this approach requires pre-
existing trajectories (collected in advance), making it more
compliant with offline RL and imitation learning settings.
Zheng et al. [13] adapted sequence modeling formulation
from offline-settings to online settings. Furuta et al. [14]
extended DT [2] to a generalized version to match any given
hindsight information.

2.2 Transformers
Transformer architectures [1] were first introduced in lan-
guage processing tasks [15], [16], [17] to model interactions
within a sequence of word embeddings, or, more generally,
unit representations or tokens. More recently, Transformers
have been employed in vision tasks with the key idea of
breaking down images/videos into tokens [6], [18], [19],
[20], often outperforming convolutional networks (CNNs)
in practice. Transformers have also been successfully used to
handle sensory information [21] and perform one-shot imi-
tation learning [22]. Chen et al. [2] explored how GPT [17]
can be applied to RL in a sequence modeling setting.

Sequence modeling in visual RL is similar to video-
based learning in terms of the input data, which consists
of observed image (i.e. state) sequences. One challenge in
applying Transformers to videos is the large number of
input tokens required to be processed. This problem has
been investigated in multiple directions, including attention
approximation [23], [24], [25], separable attention in differ-
ent dimensions [18], [26], reducing the number of tokens
using local windows [27], [28], and adaptively generating a
small number of tokens [29].

StARformer presents a similar concept of using local
windows for self-attention in Swin Transformer [27]. Our
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approach is also closely related to “divided space-time
attention” in [26] and “factorized self-attention” in [18],
in terms of handling spatial and temporal attention sepa-
rately in mentioned literature. Because these methods are
designed to reduce the number of tokens, our primary
goal is to model short- and long-range contexts separately,
thus ensuring higher performance on RL trajectories. Our
Step-to-Sequence connection is inspired by [30], which
was designed for image domain. However, our model is
still unique as (a) “spatial” (using Step Transformer) and
“temporal” (using Sequence Transformer) attention are per-
formed in multiple Transformer layers, (b) separate sets
of tokens with different origins are used, and (c) a set
of locally-attended tokens is fed to perform self-attention
in conjunction with a set of global tokens for long-term
sequence modeling. Furthermore, we find similar concepts
for the use of both attention and convolutional features
in [31].

3 PRELIMINARY

3.1 Transformer

Transformer [1] architectures have diverse applications in
language [15] and vision tasks [6], [18]. Given a sequence of
input tokens X = fx1; x2; :::; xng, where 8x 2 X;x 2 Rd, a
Transformer layer maps the sequence to an output sequence
of tokens Z = fz1; z2; :::; zng, where 8z 2 Z; z 2 Rd

through Multi-head Self-Attention (MSA) [15], followed by
Multi-Layer Perceptron (MLP) blocks with a residual con-
nection [32] and Layer Normalization (LN) [33]:

Z 0 = MSA(LN(X)) +X

Z = MLP(LN(Z 0)) + Z 0:
(1)

A Transformer model is obtained by stacking multiple such
layers. The mapping for each layer (l) is denoted by F (�):
Zl = F (Zl�1). We use the notation F (�) to represent a
Transformer layer in the remaining sections.

Self-attention [1], [34], [35], [36] is the core Transformer
component that models pairwise relations between tokens.
As presented in [1], an input token representation X is
linearly mapped into query, key and value representations
— that is fQ;K; V g 2 Rn�d respectively — to compute self-
attention as follows:

Attention(Q;K; V ) = softmax(
QKT

p
d

)V: (2)

The idea is to aggregate values based on pairwise simi-
larities between queries and keys. In such a mechanism,
each token can “attend to”, i.e., aggregate all tokens in
the sequence, with a specified weight based on learned
parameters and token content.

Vision Transformer (ViT) [6] extends the same concept
of self-attention to the image domain by mapping a set
of non-overlapping image patches to a sequence of tokens
using a fully-connected (FC) layer. Given an input image
s 2 RH�W�C , a set of n non-overlapping local patches
P = fpig 2 Rh�w�C is extracted, flattened and linearly
mapped to a sequence of tokens fxig 2 Rd, through a fully-
connected (FC) layer Rhwc ! Rd. We use a similar tokeniza-
tion approach as a part of our state token embeddings.

3.2 RL as Sequence Modeling

We consider a Markov Decision Process (MDP), described
by tuple (S;A; P;R), where s 2 S represents the state,
a 2 A, the action, r 2 R, the reward, and P , the transition
dynamics given by P (s0js; a). In MDP, a trajectory (� ) is
defined as the past experience of an agent, which is a
sequence composed of states, actions, and rewards in the
following temporal order:

� = fs1; a1; r1; s2; a2; r2; : : : ; st; at; rtg: (3)

RL is formulated as a sequence modeling task by consider-
ing action predictions from past experience [2], [3] according
to the following equation:

Pr(ât) = p(atj s1:t; a1:t�1; r1:t�1): (4)

This novel scheme does not employ conventional value
estimation or policy gradient methods.

A recent study [2], [3] attempted to use an existing Trans-
former architecture [17] for RL with the aforementioned for-
mulation. In [2], [3], the states (s), actions (a), and rewards
(r) are considered as input tokens (see Fig. 1a), and a causal
mask is used to ensure an autoregressive output sequence
generation (that is, Eq. 4). Here, a token could access any
of its corresponding prior tokens—in time— through self-
attention.

In contrast, our formulation attends tokens with (poten-
tially) strong causal relations explicitly, while also attending
to long-term relations as well. To achieve this, we split each
trajectory into small groups of state-action-reward tuples
(i.e., s; a; r) to learn local relations within the tokens of each
group through self-attention (see Fig. 1b). We then model
long-term relations in conjunction with the learned local re-
lations. Our grouping is based on the intuition that the local
causal relations between s, a and r are strong; that is, the
reward rt�1 and the state st are direct results of the action
at�1. Consequently, StARformer learns strong intermediate
representations from local groups of (at�1; rt�1; st) ex-
plicitly, to facilitate long-term sequence modeling. During
the learning of local representations, we further split each
image state into patches when learning local representations
to more effectively capture fine-grained relations between
the action and local state regions. We find that our scheme
is similar to the divided spatial-temporal attention in [26],
which is applied in the video domain with the intuition of
reducing computation requirements.

4 STARFORMER

4.1 Overview

StARformer consists of two basic components: Step Trans-
former and Sequence Transformer, together with interleav-
ing connections (see Fig. 3). Step Transformer learns StAR-
representations from strongly-connected local tokens explic-
itly, which are then fed into the Sequence Transformer along
with pure state representations to model the whole in-
put trajectory. At the output of the final Sequence Trans-
former layer, we make action predictions via a prediction
head. In the following subsections, we will introduce the
two Transformer components, and their corresponding to-
ken embeddings in detail.
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Fig. 3. (a) Structure summary of original DT [2], where its Transformer layers act similar as our Sequence Transformer. (b) StARformer consists of
Step Transformer and Sequence Transformer, to separately model a single-step and the sequence as-a-whole, respectively. Two types of layers are
connected at each level via learned StAR-representations. In terms of state embedding methods, DT uses only convolution, while StARformer uses
ViT-like [6] embeddings (patches) in Step Transformer and convolution in Sequence Transformer separately.

4.2 Step Transformer

4.2.1 State-Action-Reward Embeddings

Grouping state-action-reward: Our intuition of grouping is
to model strong local relations explicitly. To do so, we �rst
segment a trajectory (� ) into a set of groups, each of which
consists of a previous action (at � 1), corresponding reward
(r t � 1), and current state (st )1 (see Fig. 4). Each element
within a group has a strong causal relationships with the
other elements.
Patch-wise state token embeddings: In Step Transformer,
each input image state is tokenized by dividing it into a set
of non-overlapping spatial patches along its spatial dimen-
sions, in accordance with ViT [6]. Consider an image state
st 2 RH � W � C , we divide it into patches f si

t g; 2 Rh� w � C ,
which generates a total of HW=hw state tokens per image.
We use a linear projection, where the weights of which are
shared by each state patch across all groups, to create token
embeddings (RhwC ! Rd for image states or R1 ! Rd for
vector states) according to the following equation:

zsi
t

= FC(Flatten(si
t )) + espatial

i (5)

where espatial
i 2 Rd represents a spatial positional embedding

for each patch location, n is the number of patches, d is the
embedding dimension. Note that there are no temporal po-
sitional embeddings for patch-wise spatial tokens because
they are processed in agnostic of timesteps.

Our motivation for using patch embeddings is to create
�ne-grained state embeddings that allows the Step Trans-
former to model the relations between actions and rewards
within local state regions. This is especially useful in RL
tasks, where local regions of interest can be critical. We
empirically validated this in our experiments (Sec 6.5.1).
Action and reward token embeddings: We simply embed
the action tokens with a linear projection, and the reward
tokens with a linear projection followed by a Tanh (�) acti-
vation function, as in [2]. Thus, each token is mapped to an
appropriate value range for robot control.

za t � 1 = FC(at � 1); zr t = Tanh(FC(r t )) (6)

1. We pad the trajectory with a null action and zero reward at the
initial state s1 of the trajectory (see Section 4.4)

Altogether, we obtain a state-action-reward representation
as the input to the initial Step Transformer layer, expressed
as:

Z 0
t = f za t � 1 ; zr t ; zs1

t
; zs2

t
; : : : ; zsn

t
g: (7)

We obtain T groups of such token representations per
trajectory that are simultaneously processed by the Step
Transformer with shared parameters.

Fig. 4. Overview of Step Transformer. Output tokens are (1) sent to
the next Step Transformer layer and (2) aggregated to produce StAR-
representation.

4.2.2 Step Transformer Layer
We adopt the conventional Transformer design from [1]
(see Section 3.1) as our Step Transformer layer. Each group
of tokens from the previous layer Z l � 1

t is transformed to Z l
t

by a Step Transformer layer with the mapping F l
step:

Z l
t = F l

step(Z
l � 1
t ): (8)
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Fig. 5. (a) Pure state embeddings are learned from shared convolutional layers. (b) Sequence Transformer takes StAR-representation and the pure
state tokens and generate output tokens.

Each Step Transformer layer l outputs a State-Action-
Reward-representation (StAR-representation) gl

t 2 RD by
aggregating the output tokens Z l

t 2 Rn � d (see the green
�ows in Fig. 4). We concatenate the tokens of each group
Z l

t and linearly projecting ( Rnd ! RD ), where d and
D correspond to embedding dimensions of Step Trans-
former and Sequence Transformer, respectively.

gl
t = FC([Z l

t ]) + etemporal
t (9)

Here [�] represents the token concatenation within each
group, and etemporal

t 2 RD represents the temporal positional
embeddings for each timestep. Note that we add these
temporal positional embeddings to gl

t at each layer because
[Z l

t ] is learned agnostically with respect to time. Finally, the
output StAR-representation gl

t is fed into the corresponding
Sequence Transformer layer for long-term sequence model-
ing.

4.3 Sequence Transformer

Our Sequence Transformer (illustrated in Fig. 5) mod-
els long-term sequences by looking at the learned StAR-
representations and the pure state tokens(introduced below)
over the entire trajectory.

4.3.1 Pure State Token Embeddings

In contrast to the patch-wise token embeddings in Step
Transformer, we embed the overall input image state st to
generate pure state tokensh0

t . Each such token represents a
single-state representation that describes the state globally
in space. We achieve this by processing each state through
a CNN encoder, whose convolutional layers spatially com-
bine the features. The convolutional encoder is obtained
from [37].

h0
t = Conv(st ) + etemporal

t ; (10)

where etemporal
t 2 RD represents the temporal positional

embeddings exactly the same as what we add to gt .

4.3.2 Sequence Transformer Layer

As in Step Transformer, we use the conventional Trans-
former layer design from [1] for our Sequence Transformer.
The input to the Sequence Transformer layer l consists of

representations from two sources: (1) the learned StAR-
representations gl

t 2 RD from the corresponding Step
Transformer layer, and (2) the pure state representation
hl � 1

t 2 RD from the previous Sequence Transformer layer.
The two types of token representations are merged to form a
single sequence, preserving their temporal order, as follows:

Y l
in = f gl

1; hl � 1
1 ; gl

2; hl � 1
2 ; : : : ; gl

T ; hl � 1
T g: (11)

We placegl
t before hl � 1

t , which originates from st , becausegl
t

contains information pertaining to the previousaction at � 1,
which comes prior to st in the trajectory. We also apply a
causal mask in the Sequence Transformer to ensure that the
tokens at time t cannot attend to any future tokens (i.e., > t ).

Sequence Transformer computes an intermediate set of
output tokens as follows:

Y l
out = F l

sequence(Y
l

in ): (12)

We then select the tokens at even indices of Y l
out (where

indexing starts from 1) as the pure state tokens hl
t , which

are fed into the next Sequence Transformer layer. Because
the even indices correspond to the tokens originating from
the pure state representations st (Fig. 5(b)), they should be
used to predict actions from an autoregressive perspective
(see Fig. 1). In contrast, any tokens inY l

out with odd indices
do not propagate to the next layer.

Y l
out = f yl

out;1 ; yl
out;2 ; : : : ; yl

out;2T g

hl
i := yl

out;2i (13)

Therefore, the overall input (StAR-representation and pure
state representation) to the subsequent layer can be ex-
pressed as (by rewriting Eq. 11):

Y l +1
in = f gl +1

1 ; hl
1; gl +1

2 ; hl
2; : : : ; gl +1

T ; hl
T g

= f gl +1
i ; yl

out;2i g
T
i =1 :

(14)

4.3.3 Action Prediction

The output of the last Sequence Transformer layer (after
selection as mentioned above) is used to generate action
predictions by processing it through a prediction head � (�)
linearly mapping to the action dimension (with shared
weights for all timesteps): ât = � (hl

t ).
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